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Abstrart-A study is made of the combined free and forced convective heat transfer and fluid flow in a 
rotating curved circular tube for the f&y deveioped flow with the thermal boundary condition of coustant 
heat flux per unit length of tube. The beat-transfer and flow-friction characteristics are determined by the 
five non-dimensional parameters, i.e. the radius ratio 8, the Prandtl number Pr, a parameter Ro which 
represents the effects of Coriohs forces, the Grashof number Gr, and the Dean number Kr The governing 
equations are solved by finite difference method, and the results of computations are presented for the 
axial velocity and temperature distributions, the streamlines and isothermals, the localfand Nu, and the 
meanf and Nu, The effects of B is minor, Pr has substantially no effect onf, but increases Nu greatly 
when a strong secondary current is present. The increase in the last three parameters of secondary-flow- 
inducing forces enhance both f and NU significantly. The rate of increase infand Ntr due to the force 
parameters is higher for a circtdar tube than for rectangular tubes. Their effects commence to be pronounced 
at smaller values of them which are Ro = 2, Gr, x 100 and K, x 100, while those for a square tube are 

Rn * 10, Gr, c 1000 and K, = 100. 
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radius of circular tube ; 
radius of curvature; 
radius ratio s b/a ; 
specific heat at constant pressure ;’ 
source term ; 
pressure gradient in q-direction ; 
temperature gradient in tp- 
direction ; 
dummy functions ; 
friction factor ; 
centri~g~ acceleration = MY ; 
Grashof number ZE & A.t2,3/~2 ; 
heat-transfer coefficient ; 
thermal conductivity; 
Dean number E 2aw,/(v,/B); 
number of divisions in R- and @- 
directions ; 
Nusseh number E 2uh/k ; 

pressure ; 

modified pressure ; 
non-dimensional pressure SE 
p’lp (v/a)’ : 
Prandtl number s v/x ; 
heat flux ; 
toroidal coordinates ; 
non-dimensionaI radial coordinate ; 
mesh sizes in R- and @-directions; 
Reynolds number 3 2uw~/v; 
non-dimensional parameter repre- 
~nt~gthema~~tudeof~ecor~olis 
force E a ‘Q/V ; 
arc length of tube axis = bar, ; 
temperature ; 
representative temperature zz 
PraC2 ; 

non-dimensional temperature ES 
(tw - t)/& ; 
velocity components in r-, 8- and 
~-dir~tions ; 

1295 



H. MIYAZAKI 

non-dimensional velocity com- 
ponents in R-, O- and q-directions 
z au/v, au/v and w/w, ; 
representative velocity in q-direc- 
tion = a’Cr,/j~; 
Cartesian coordinates ; 
thermal diffusivity ; 
coefficients in finite difference equa- 
tion ; 

volume expansion coefficient ; 
prescribed error for iterative pro- 
cess ; 
ratio of mesh sizes = A&/A6 ; 
vorticity ; 
quantity in equation (47) ; 
viscosity ; 
kinematic viscosity ; 
density ; 
shearing stress; 
stream function ; 
relaxation parameter ; 
angular velocity. 

bulk mean ; 
space subscripts of grid point in R- 
and f&directions ; 
local ; 
mean ; 
stationary straight circular tube ; 
wall ; 
r- and cp-components. 

1. INTRODUCTION 

years it has become increasingly 
important to incorporate some cooling system 
into the design of rotary machines such as gas 
turbines, electric generators, motors, etc. An 
improvement in the thermal efficiency of a gas 
turbine can be effectively achieved by increasing 
the gas temperature at the inlet of turbine. 
However, the maximum temperature at which 
the present day materials for rotor blades insure 
the reliable operation of a gas turbine plant is 
approximately 850°C so that, if the inlet gas 
temperature exceeds this value, some cooling 

device is essential. Schmidt first proposed that 
this problem could be solved by the use of blades 
with holes drilled radially filled with some 
cooling substance. It is expected that this gives an 
extremely effective cooling, because the centri- 
fugal acceleration can become of the order of 
104g. Many investigations of heat transfer 
inside these thermosyphon holes have been 
reported. These investigations were, however, 
conducted under the Earth’s gravitational field, 
which differs from the rotational field in the 
presence of Coriolis forces which induce a 
secondary flow in a plane perpendicular to the 
main flow. 

Further, the employment of some cooling 
device for electric generators are also of great 
importance to protect the insulating materials 
surrounding conductors, which are usually 
resistant against a high tem~rature up to 
10&15O”C for a reliable long-range operation. 
As a coolant, air was first used. It was then 
replaced by pressurized hydrogen which has a 
larger thermal capacity. The cooling is effected 
by pumping a coolant through hollow passages 
located inside the conductors or through axially 
located holes in the rotor drum. The hydrogen- 
cooling method makes it possible to construct 
a generator with the output of up to 25OOGO kW 
compared with the maximum output of 60000 
kW for an air-cooled generator. Recently it has 
been attempted to employ water which is the 
most efficient coolant. The water-cooled genera- 
tors have been in practice constructed in the 
Soviet Union, Switzerland, etc., and put into 
operation, though there are some technical 
difliculties encountered in sealing, strength, 
balancing of rotor, and insulation. It is esti- 
mated that this type of cooling method is 
capable of the maximum output of 750000 kW. 

As a rotating geometry many configurations 
can be envisaged according to the shape and 
location of cooled components, i.e. (a) open 
thermosyphon, (b) closed thermosyphon, (c) 
straight tube rotating about a parallel axis, (d) 
straight tube rotating about a perpendicular 
axis, and (e) rotating curved tube. The first two, 
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(a) and (b), are the configurations attempted to 
be utilized for the cooling of gas turbine blades. 
The first and the last three, (a), (c), and (d) and (e), 
are the conjurations encountered in cooling 
rotor drums and conductors of electric generator. 

A remarkable characteristic of the flow and 
heat transfer in the rotational system of motion 
is the presence of centrifugal and Coriolis forces 
which induce a secondary flow in a plane perpen- 
dicular to the direction of main flow, and the 
flow and temperature fields are consequently 
three-dimensional. The secondary flow also 
arises, when a tube is curved, and enhances sig- 
nificantly the pressure drops and heat-transfer 
rates. In spite of the great practical importance 
and academic interest, the flow and heat transfer 
in rotating configurations are not yet sufficiently 
investigated, and little information is available 
for the design. Barua [l] has reported the 
theoretical analysis of the ftilly developed flow 
in a straight tube with circular cross section 
rotating about a perpendicular axis [the con- 
figuration (d)]. Morris [2] has presented the 
result of theoretical analysis for the asymptotic 
velocity and temperature distributions in the 
con~guration (c) solved by a series expansion in 
terms of the rotational Rayleigh number. 
Humphreys et al. [3] also investigated experi- 
mentally the local and mean heat-transfer 
characteristics for air flowing turbulently in the 
entrance of a circular duct revolving about a 
parallel axis. Mori and Nakayama [4] have 
solved the same problem by Pohlhausen’s 
method, and presented the pressure-drop and 
heat-transfer characteristics, which hold for a 
large angular velocity. 

Compared with the problem in a rotating 
system the study on the flow-fiction and heat 
transfer characteristics in curved stationary 
tubes has been fully made in conjunction with the 
application to heating and refrigerating plants. 
It was first treated theoretically by Dean [S, 61, 
who has solved the equation’s of flow by per- 
turbation, and clarified that the flow field is 
controlled by the Dean number alone. Adler [7] 
made the extensive measurements of velocity 

distribution, and has found that the boundary- 
layer approximation holds for large values of the 
Dean number. He has also made a theoretical 
analysis by Pohlhau~n’s method, referring to 
the results of his measurements. By the same 
method Barua [S] has solved the flow field, and 
later Mori and Nakayama [9, lo] have reported 
the results of their theoretical analysis for both 
laminar and turbulent flows which are valid 
for large Dean numbers. The experimental 
investigations were made for turbulent flow 
and heat transfer by Ito [l 11, Seban and 
McLaughlin [12], Rogers and Mayhew [13], 
etc. 

The investigation for the induration (e) 
has been attempted by Ludwieg [14]. He has 
solved the boundary-layer equations by Pohl- 
hausen’s method for large values of the Dean 
number and rotational velocity for the fully 
developed laminar llow in a square tube, and 
obtained the friction factor which was verified 
by his experiment. 

The object of the present analysis is to investi- 
gate theoretically the flow-friction and heat- 
transfer characteristics in curved circular tube 
rotating about the axis through the center of 
curvature [configuration (e)]. The governing 
equations are approximated by finite difference 
schemes and solved by iterative method under the 
conditions that the flow and temperature fields 
are fully developed, and the wall heat flux is 
uniform with ~ripherally uniform wall tem- 
perature. The results of computations are 
presented graphically for the temperature and 
velocity distributions, the streamlines and iso- 
thermals, and the local and mean Nusselt num- 
bers and friction factors. 

2. TISEORETICAL ANALYSIS 

Governing equations 
The geometrical configuration of the physical 

model for a rotating curved circular tube and its 
coordinate system are given in Fig. 1. The sense 
of the angular velocity vector is such that the 
direction of the axial velocity coincides with 
that of the rotational velocity. The cross section 
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of the tube is perpendicular to the tube axis we are concerned with so that the elimination 
0’0. For the convenience of the theoretical of gravitational force term apparently causes 
analysis the toroidal coordinate system (r, 8. cp) no significant errors. The detailed derivation of 
is employed, and the governing equations are the governing equations which describe the 
described in terms of this coordinate system aforementioned physical model is given in [ 151. 
instead of the Cartesian coordinate system (x’, They are, however, too complicated to solve 
y’, z’). The velocity components in the r-, f3- and so that some additional assumptions will be 
p-directions are denoted by u, u and w res- made to simplify them. First, we consider a 
pectively. The parts of the tube wall are termed special case that the radius of curvature 6 is 

Axis of rototion 
Y 

FIG. 1. Toroidal coordinate system. 

the inner, outer, upper and lower walls for 
the convenience of explanations of computa- 
tional results. The horizontal and vertical center 
lines, along which the axial velocity and tem- 
perature distributions will be presented in a 
graphical form, are also indicated in the figure. 

The flow is assumed to be laminar and, with 
the exception of density, the physical properties 
are taken to be constant. The axial velocity is so 
low that there is no energy dissipation due to 
friction, and no heat source is present within the 
cooling fluid. The gravitational force is neglected 
compared with the centrifugal force due to rota- 
tion. The rotational acceleration is usually of the 
order of 103-104g for the rotary machines which 

much larger than the radius of tube a, i.e. 
B s 1. This is justified by the fact that B is 
approximately 50 at the actual situations of 
application. Further, the mean friction factors 
f and Nusselt numbers Nu for both the exact 
equations and the simplified equations with 
B 9 1 were computed and compared in [lS] in 
the case of a square tube, varying B from 5 to 500 
which covers the range of practical interest. The 
result shows that there is substantially no dif- 
ference between the two solutions in the vicinity 
ofB = 50, and at B = 5 the simplified solutions 
for f and Nu are respectively 6 and 2 per cent 
lower than the exact solutions, while at B = 500 
they are 3 and 2 per cent higher. Consequently, 



it can be anticipated that this simplification does 
not cause intolerable errors. With this assump- 
tion the termrr cos 8 is to be ignored compared 
with b. Further, all the terms which have b in 
their denominator are negligible in comparison 
with those which have r in their denominator or 
those of derivatives with respect to r. However, 
the centrifugal force term w2/b should be 
retained, since the axial velocity w is much 
larger than the velocity components of secondary 
flow IJ, v. 

The second term on the right-hand side of 
equation (3) is a centrifugal force acting in the 
x-direction and balanced with the pressure 
gradient so that it makes no contribution to the 
motion of fluid in tube. With these assumptions, 
we obtain the following simplified equations 

Next, we deal with the hydrodynamically and 
thermally fully developed flow regime, where 
the axial pressure and temperature gradients 
become constant, i.e. ap/as = - Cl and 
&/as = C2. Further, the velocity and tempera- 
ture distributions maintain a similar form in the 
axial direction and become independent of the 
coordinate cp. 

a(ru) a0 ~+gj=o, 

au au v2 W2 
uar+s-Y-cOSeT 

- 252cosew -fcBcos8(t, - t) 

= -;!g-v&g+; -2). (5) 

Before we introduce the simplified equations, 
we modify the centrifugal force terms. The 
density varies with temperature according to the 
relation 

a0 av uv W2 
uar +r---e+-+sinOF 

r 

+ 252 sin ew + f,/? sin eft, - t) 

since pw w p. In general the volume expansion 
coefficient /I is a function of temperature, and 
the temperature dependence of /? is not neces- 
sarily negligible for water. However, it was found 
in [15] that the differences off and Nu between 
the cases of variable and constant /I were 
approximately 06 and 2 per cent respectively. 
This discrepancy is tolerable for the industrial 
applications so that /3 is taken to be constant in 
the present analysis. Therefore, the rotational 
centrifugal force per unit volume is rewritten 
in the form, noting that the acceleration of 
centrifugal force is f, = bS12 and using equation 

(I), 

U: + v-$ + 2syuc0se - vsin8) 

=L,+v g+;;+-$$, 
P ( 1 

(7) 

at at 
u-&+v-+czw 

rae 

(8) 

which are subject to the boundary conditions 

u=v=w=o, t = t, at wall. (9) 

pbQ2 = I%_& + P_LPkv - 0 (2) 

In addition we introduce the modified pressure 
p’ such that 

In order to non-dimensionalize the governing 
equations thus obtained, we introduce the 
following non-dimensional variables 

pr = p - p,~rcost? 

&au 
V' 

v2, w2 
V WI’ 
t, - t 

(3) 
p_!c- 

P(VM2 T= At, ’ 
RL 

a’ (10) 
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Further, we attempt to alter the non-dimen- Since it is readily found that U, W and Tare 
sional equations to facilitate the numerical symmetric, and V; $ and 5 are anti-symmetric 
computation. The equation of continuity is with respect to the horizontal centerline. the 
identically satisfied by the stream function J/ boundary conditions are altered to 

u=!k- 
RatI 

I/= _!!! 
aR' 

(11) 

We introduce the vorticity of secondary flow 5 at R = 1 for 0 < tI < 7tL, (18) 

(12) au aw -aT 

Substitution of equations (11) into (12) yields 

-&=ae=ded=*=~4 

the equation of stream function at 8=0,21tforO<R61, (19) 

v2* = - <. (13) and it suffices to consider the upper half of the 

The equation of vorticity is derived by eliminat- 
cross section alone owing to symmetry. 

ing the irrelevant pressure terms from the two 
equations of momentum in the R- and 8-direc- Finite difference representation 

tions, and is given by All the governing equations are to be ex- 
pressed in the following general form, using a 
dummy function F which represents either one of 
the dependent variables 

+ ‘K2 2 1 
( 

cosew= 
Rao 

+sintIkVg + 
) (20) 

(JB)RoK, 
( 
cos 8 $$- + sin 6 g 

> 

V’F+Dg+E;+C=O. 

D and E are either - U, - VJR or - PrU, 

+ Gr 2 + sintIE 
> aR . (14) 

- PrV/R respectively, and C is a source term. 
The radial coordinate is divided into M seg- 

The equations of axial momentum and energy 
ments with the step size VR = l/M, while the 

are to be rewritten in the form 
angular coordinate is divided into N segments 
with the step size A8 = n/N. An arbitrary grid 

aw aw 4Ro point in the domain is denoted by (i,j), and the 

v2w= ‘x + ‘R%j + (,/B)K, derivatives in equation (20) are approximated 

x (uc0se - Vsint?) - 1, (15) 
by appropriate finite difference schemes. To the 
non-linear inertia terms we apply the modified 

L/B)& 
one-sided difference scheme utilized by Spald- 

- PW (16) 
2 

ing et al. [16] in order to assure stability, i.e. 

Equations (11) and (13)-(16) are the final system 
of equations to be solved, and are subject to the i,j z Di,j + IDi,jl F, 

2AR r+l,j 

boundary conditions _---F. _ Di,j-IDi9jlF__ (Di j! 

U=V=$=$=W=T=OatR=1. 
AR lyJ 2AR 

,+o(AR) 
1 1.J 

(17) "11 (21) 
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( ) Et! 
ae i,j z 

Q,j+ IBi,jlF, 

2Ae I,]+ 1 

_!%&. ,_ Ei, j - 1 Ei, jt 

1.3 2A8 
Fi,j_ 1 + qAe)’ (22) 

The Laplacian operator is replaced by the 
central difference scheme 

V2F w Fi+lV_i - 2Fi,j + Fi-l,j 

AR2 

1 Fi+l,j - F,-1.j 
+R,. 2AR 

+ 
Fi,j+l - 2Fi.j + Fi,j- 1 

Ae2 
+ O(AR2, Ae2). (23) 

Approximating the differential equation (20) 
by the finite difference schemes (21)-(23) and 
solving for Fi,j, we get 

Fi,j E a,,i,jFi+,,j + a,,i,jFi-,,j+a3,i,jFi,j+1 

+ ~4, i,j Fi,j- I + ~5 i j Ci j, I. 9 (24) 

where 

ar,i,j = 
i 

1 + AR/2Ri + (Di,j + lOi,jI)y 
ii 

Ri,j, 

a2,i,j = 
1 

1 - AR/2Ri -(Oi,j - lOi,jl)~ 
Ii 

Ri,j, 

a,,i,j= 
1 

&?/RF + (Ei,j+ IEi,jI)F 
II 

Ri,jv (25) 

~xq,i,j= ~~/R~-(~i,j-IEi,jl)~ 
1 II 

Ri,j, 

o/s,i,j = AR’1Ri.j 

with _ Ri,j = 2(1 + &‘/RF) + (lDi,jl + I Ei,jls)AR 
and E = ARfAe. The coefficients Di,jy Ei, j and 
the source term Ci,j take on specific forms for 
each dependent variable, but their presentation 
is abbreviated. Equations (11) are approximated 

by 

u. x ‘i9j+1 - ‘iqj-l : E + ()(A@, 
1.J Ri2AR 

(26) 

y,jz - +i+l.j - #i-1,j 

2AR 
+ O(AR’). (27) 

The boundary conditions (18) and (19) become 
in the finite difference form 

uMM+l,j = hf+l,j = *M+2,j - *M,j 

= WM+l,j = TM+l,j = 0, (28) 

ui,2 - ui,O = W.2 - K.0 = T.2 - T,O 

= Y, 1 = $i, 1 = li, 1 = O, (29) 

Ui,N+2 - Ui,N = K,N+2 - K,N = 

T,,+2 - ‘Ti’,N = K,N+l = Il/i,N+l 

= 5i,iV+l = O3 (30) 

where the values at grid points outside the 
domain are eliminated by the use of equation 
(24) applied to a corresponding boundary point. 

The wall vorticity is computed from the 
stream function by the Dorfman-Romanenko’s 
approximation [17]. Applying the equation of 
stream function (13) to the wall i = M + 1, and 
considering the boundary conditions (18) we 
obtain the vorticity at wall 

i 
av 

M+l,j = - 0 aR2 
(31) 

M+l,j 

The stream function at i = A4 is developed into 
the Taylor series about the point i = M + 1 as 

+ O(AR4). (32) 

Since time 1, j = (&,b//aR),+ 1, j = 0, equation (32) 
becomes, using equation (31) 

M+l.j 

+ O(AR4). (33) 

Differentiation of equation (13) with respect to 
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R yields the following relation at i = A4 + 1 

(~)~+,,j~ -~)~+~,j- ~~)~+,,j 

83th =:-- (-1 aR3 
t-i M+l,j (34) 

M+l,j 

The derivative on the left-hand side of equation 
(34) is replaced by the forward difference. Then 
solving equation (34) for the third derivative of 
stream function at i = M + 1, and substituting 
it into equation (32) we linally obtain the wall 
vorticity 

iM+l,j x - AR’(1 : AR/;?) *~j 

The above vorticity was not used explicitly in 
the iterative process to remove a cause of 
instability. It was omitted by the use of equation 
(24) for the vorticity at wall, and was computed 
from equation (35) after solutions have con- 
verged. 

The governing equations have a singular point 
at the center R = 0 so that the finite difference 
equation (24) ceases to apply there. Since the 
stream function and vorticity are independent of 
8, the boundary conditions (19) for them holds 
identically at the center, i.e. 

ll/l,j = il,j = O. (36) 

The rest of the dependent variables are deter- 
mined by extrapolation. The parabolic extra- 
polation formula from the values at the 
neighbouring three successive points gives 

F,,j = 3F2,j - 3F,,j + F,., (37) 

The iterative procedure was employed to 
obtain the solutions for equation (24). To in- 
crease the convergence rate the overrelaxation 
method was used, and the relaxation parameter 
was evaluated from w = 2[1 + J(l - $]/q 
with 1 = (cos z/M + cos n/N)/2. To the itera- 
tion of vorticity, however, the underrelaxation 
method was applied so that the fluctuation of 

vorticity during the iteration is small enough for 
instability not to emerge. The iterative computa- 
tion was terminated, when the relative error of 
solutions became less than some preassigned 
small quantity 6. It was found from the pre- 
liminary computations that M = N = 24 
secured a sufficient accuracy correct up to three 
significant figures with 6 = OQOl for relatively 
small values of the non-dimensional parameters. 
However, for Pr > 1.3, Ro > 30, Gr, > 3000 
and K, > 300, M = N = 36 was used with 
6 = 0.001 to obtain convergent solutions with 
sufficient accuracy. The underrelaxation para- 
meter was varied from 0.15 to 0~5 according to 
the magnitude of the non-dimensional para- 
meters. 

Evaluation off and Nu 

The mean friction factor f is defined by 

which is solved forfas 

8 8 

f = (+?)K,W, = ~ Re W,’ 
(39) 

or 
_f.Re _ 1 
fs.Re 8Wm 

The mean Nusselt number is obtained from 
the heat balance equation. The increase of fluid 
enthalpy per the tube length ds is equal to the 
heat supplied from wall of length ds by con- 
vection so that 

pcPCz ds za’w,,, = 27x4 ds h(t, - tb). (41) 

The mean Nusselt number is defined as Nu 
2~~/~, which is rewritten in the form, using 
equation (41) after some rearrangements 

Nu = L/B)& Nu 11 ($W, 
27b 

,orK=E. Tb . 
(42) 

The wall shearing stress acting in the axial 
direction is 

(L,qJr=a = - /J -g _ il (43) 
--(I 
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No~~dimensiona~i~~~ the shearing stress by the 
dynamic pressure &w& and dividing it by 
h.Re = 64,wehave 

(fif,=,.Re 1 
fs.Re = 

--- 

The first derivative is represented by the four- 
point approximation 

is a determining factor of its rise. It also affects 
the pattern and intensity of secondary current. 
Since the circular cross section has geometrically 
a less resistance against thecurrent, the secondary 
flow occurs more readily, and its effects on the 
friction factor and the Nusselt number appear at 
much smaller values of the non-dimensional 
parameters. There is also no corner effect which 
produces stagnant regions at corners of cross 
section, and reduces greatly the flow friction and 
heat transfer. 

+ O(AR”). (45) 

Noting WM+ r,j = 0, substitution of equation 
(45) into (44) yields 

V;L. Re 1 ____- * ~ 
.L.Re 96W, 

X- 
lgWM,j - 9WM_i,j f 2WM_, j _I 

AR 
(46) 

The r-component of local heat flux at wall 
directed toward the inside of tube is given by 

br 
f&s = k g r=(l 

0 
= M, - fJ. (47) 

The local Nusselt number is defined as Nu, = 
2crhJk. Dividing Nul by Nu, = 48/l 1 and apply- 
ing the four-point approximation to the deriva- 
tive of temperature, we obtain with TM + I *j = 0 

There are five no~~dimensional parameters, B, 
Pr, Ro, Gr, and RI, and computations are 
required for an extremely large number of cases 
to grasp the entire characteristics. Considering 
the economy, therefore, &ompu~atio~s were 
made such that the standard values of the para- 
meters, B = 50, Pr = 0.7, Ro = 1, GI”~ = 10 and 
Kr = 10 were chosen, and, to see the effects of 
one parameter, the rest of the parameters were 
fixed at the standard values. Since the effects of 
3 was found to be m&r from the ~~mputatious 
for rectangular tubes in [15], it was fixed at 50. 
Further, the additional standard values, B = 50, 
Ro = 10, Gr, = 10 and K, = 100 were selected 
to see the efkcts of Pr more ckarIy. The results 
of ~orn~~~ti~ns are presented for the axial 
veiocity and temperature distributions, the 
streamlines and isothermals, the local friction 
factors and Nusselt numbers, and the mean 
friction factors and Nusselt numbers. However, 
it is lengthy to describe the effects of ah the 
parameters on the flow and heat-transfer charac- 
teristics so that the descriptions here will be 
constricted to the effects of Roalone except those 
on the mean friction factors and Nussett num- 
bers, provided that the effect of Pr on the mean 
characteristics is eliminated. The complete pre- 
sentation of the results is made in fl5], 

3. RESULTSANDDISCUSSION Figures 2 and 3 show the effects of Ro on the 
A great difference between a circular tube and axial velocity and temperature distributions. 

rectangular tubes for which the results of The solid, dotted and one-dotted lines represent 
computations are presented in [IS] is seen in the curves for Ro = 1, 10 and 70 respectively. 
the formation of secondary flow. The secondary The Coriolis farces have the components in the 
flow occurs in the plane ~r~endicu~ar to the plane of secondary flow and in the rp-direction. 
tube axis so that the shape of tube cross section The resultant force of the former components, 
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0 f-0 

&0”, 
FE. 2. Variation of axial velocity distribution with Ru 

(B = 50. Pr = 0.7, Gr, = 10, K, = IO). 

which is proportional to the axial velocity w, consequence the Corioiis force together with 
is directed outward from the axis of rotation, and the inertia force causes the increase in the axial 
indu~esthese~ondary~ow~~elattercom~onent velocity there as shown in the right figure for the 
is proportional to the velocity of the secondary velocity distribution along the vertical cmter- 
flow, and deccelerates the main flow in the line. The velocity distributions are almost 
central region so that the axial velocity distri- symmetri~~bout the center owing to the property 
bution is flattened with the increase in Ro. In of the Coriolis forces which tend to restore the 
the vicinity of the upper wall, however, the fluid flow system to an equilibrium state. The variation 
is accelerated by this component because the of temperature distribution is less marked. It is 
direction of secondary current is reversed. In due to the fact that theretatively strong secondary 

Frc;. 3. Variation of temperature di~trib~t~~~ with Ru 
iB = 50, Pr = 0‘7. Gr, = 10, K, = IO]. 
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current is constrained to the close vicinity of the 
upper and lower walls, and it is weak in the 
broad central core. The heat convected by the 
secondary current is so small in the central 
region that the heat is supplied by conduction 
which results in temperature gradient rather than 
flattening. The conducted heat is carried away 
by the main flow by convection. Since the con- 
vected heat is axisymmetric owing to the 
symmetry of the axial velocity, the temperature 
distributions are also symmetric about the 
center. 

The streamlines and isothermals were ob- 
tained by interpolation from the stream function 
and temperature distributions respectively. Since 
they are symmetric about the horizontal center- 
line, the former are plotted in the upper half 
plane and the latter in the lower half plane. The 
three streamlines are drawn such that they pass 
either one of the points R x 0.1,02 and 033 at 
13 = 90”, and a value of stream function for each 
streamline is specified so as to be able to assess 
the flow rate and intensity of secondary flow. 
The four isothermals are illustrated for T/Tb 
x 03. @7~ 1.0 and 1.5 so that the density of iso- 
thermals indicates the steepness of temperature 
gradient. The axis of rotation is located on the 
left-hand side of the tube cross section so that 
the circular secondary current flows counter- 
clockwise in the upper half plane. 

Figures 4 and 5 show the streamlines and 
isothermals for the standard values (Ro = 1) 
and Ro = 70 respectively. For Ro = 1 the effect 
of the Coriolis forces is negligibly small. The 
secondary flow must be governed mainly by the 
buoyancy and centrifugal forces, and accordingly 
the pattern of streamlines are somewhat shifted 
toward the upper wall. For Ro = 70 an essentially 
different flow field is formed. The flow is uniform 
over a broad central region which occupies 
approximately a half of cross sectional area. 
However, the current velocity is extremely low 
as seen from the values of stream function. This 
is attributable to the restoring property of the 
Coriolis forces which push back the main flow 
and flatten the axial velocity distribution. The 

FIG. 4. Streamlines and isothermals for standard values of 
parameters 

(B = 50, Pr = 0.7. Ro = 1, Gr, = 10, K, = 10). 

returning secondary current is forced to flow 
through a narrow passage in the close vicinity 
of the upper wall owing to the broadening of the 
central core. The streamlines are dense there, but 
there is not a great increase in velocity because 
the secondary flow itself is not very strong. The 
isothermals tend to be displaced at first. The 
temperature gradient is, therefore, steep at the 
outer wall, and is gradual at the inner wall. 

FIG. 5. Streamlines and isothermals for Ro = 70 
( B = 50, Pr = 0.7, Gr, = 10, K, = 0). 



Further increase of Rrr results in the symmetric 
pattern of isotherm& about the vertical center 
iine. The temperature gradient at the lower wall 
increases somewhat because of the relatively 
strong secondary current there, 

The results of the local friction factors and 
Nusselt numbers are plotted against the angle 19. 
They are presented in reference to those for a 
stationary straight circular tube to see their 
relative inerease and variation. In order to 
observe the effect of a non-dimensional para- 
meter, the local friction factors and Nusselt 
numbers are computed for its three values with 
the rest of the parameters fixed at the standard 
values, and are represented by the solid, dotted 
and one-dotted lines respective1yin the increasing 
order of magnitude of the parameter. 

Figure 6 show the local friction factors and 
Nusselt numbers when Ro is varied. Ro has a 
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peculiar effect which is typical of the Coriolis 
forces. The Coriolis force in the axial direction 
apposes the main flow, and fktkns the axial 
velocitydistribution.Thelarger theaxial velocity, 
the larger the opposing force so that the central 
core with uniform secondary flow and constant 
axial velocity is formed, and, moreover, the 
flow field becomes symmetric about the vertical 
centerline. ConsequtJntly the distribution of the 
‘focal friiction factor is z&o symmetric about 
B =L 90”. Since the Coriolis force acting on the 
returning secondary current in the vicinity of the 
upper wall causes the axial velocity and accord- 
i&y its gradient to increase. It results in the 
increase of friction factor at 8 = W”, and an 
appreciable increase is seen for Ro = 70. The 
effect on the Nusseit number is on the other 
hand less pronounced, though the variation of the 
Nusselt number with B is similar to that of the 
friction factor. The maximum value is only 1.5 
for Ro = 70, while that of the friction factor is as 
large as dmost 3-O. 

The mean frictions, factors f and Nusselt 
numbers Nu are plotted on semi-log scale against 
the non-dimensional parameters in the form of 
the ratio to those for a stationary straight circular 
tubef” and Nu,. f, + Re and Nu, are known to be 
64 and 48/f 1 respectively for the fully developed 
laminar flow with constant wall heat flux. The 
non-dimensional parameters are varied as Ro 
7 I-100, Gr, = 100--10000 and K, = iO_1000, 
while B is fixed at 50 because its effects are minor. 

Figure 7 is the mean friction factor and Nussett 
aumber against Ro, which are represented by 
the sofid and dotted lines respectively. As it has 

Frt;. 7. Mean friction factor and Nusselt mu~~ber vs. Rti 
(B = 50, Pr = O-7, Gr, = IO, K, = 10). 
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been pointed out before, the geometrical resis- 
tance against the secondary current is smaller 
for circular cross -section. Consequently the 
effect of Ro becomes evident at a smaller value 
Ro x 2 than for rectangular cross section 
Ro x 10. Moreover, the rate of increase is much 
larger. In the case off;f. Re/(& . Re) has almost 
the same value at Ro = 10 for both cases, but at 
Ro = 100 it is 1.5 for rectangular cross section, 
while it reaches as high as 2.15 for circular cross 
section. The increase in f is more pronounced, 
because the Coriolis force acts as a resistant 
force against the main flow, andftends to asymp- 
totically increase in proportion to Ro”. The heat 
transfer is less enhanced by the Coriolis forces, 
and its asymptotic behaviour is such that Nu 
is proportional to Ro’!’ 2 as in the case of rec- 
tangular cross section. 

f.j ,5_.--.-;;! 
IO* 2 4 6 6 IO3 2 4 6 6 IO’ 

Gr2 

FIG. 8. Mean friction factor and Nusselt number vs. Gr, 
(B = 50, Pr = 0.7, Ro= 1, K, = 10). 

Figure 8 shows the plot of the mean friction 
factor and Nusselt number against Gr,. The 
effect of secondary flow due to Gr, commences 
to become significant at Gr, x 100 compared 
with Gr z z 1000 for rectangular cross section. 
On the contrary to Ro the increase rate of Nu 
due to Gr, is higher than that off, and Nu/Nu, 
exceedsf. Re/cf . Re) at Gr, z 1000. For large 
Gr,,f and Nu are proportional to Gri19 and Gri” 
respectively. These results agree exactly with 
those of Mori and Makayama [8] for a circular 
tube rotating about a parallel axis. 

Figure 9 shows the mean friction factor and 
Nusselt number against K,. The effect of K, 
appears at K, x 100, which is the same value 
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FIG. 9. Mean friction factor and Nusselt number vs. K, 
(B = 50, Pr = 0.7, Ro= 1, Gr, = 10). 

as for rectangular cross section. However, the 
increase rate off and Nu is larger for circular 
cross section. The centrifugal force furthers 
heat transfer more than flow resistance as the 
buoyancy force does. Nu increases at the same 
rate as f up to about K, = 100, and more 
rapidly thereafter. The extrapolated behaviour 
is such that f and Nu vary proportionally to 
Kij6 and K:14 respectively. For a stationary 
curved circular tube, however, both of them 
increase at the rate of K:j2. 

4. CONCLUSIONS 

The problem treated in the present theoretical 
analysis is the flow and heat transfer in a curved 
circular tube rotating about the axis through 
the center of curvature. The flow-friction and 
heat-transfer characteristics are determined by 
the five non-dimensional parameters, the radius 
ratio B, the Prandtl number Pr, the parameter 
Ro, which represents the effects of the Coriolis 
forces, the Grashof number Gr, and the Dean 
number K,. The governing equations are solved 
by finite difference method by the use of iterative 
procedure, and the results of computations are 
presented graphically for the axial velocity and 
temperature distributions, the streamlines and 
isothermals, the local friction factors and Nusselt 
numbers and the mean friction factors and 
Nusselt numbers. The evaluation of the above 
flow and heat-transfer characteristics is made, 
varying one of the non-dimensional parameters 
with the rest of the parameters fixed at the 
standard values which are B = 50, Pr = 0.7, 
Ro = 1, Gr, = 10 and K, = 10. B is, however, 
fixed at 50, since its effects on the flow and heat- 
transfer characteristics are minor. Due to the 
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excessive length, the presentation and discussion 
are confined to the effects of Ra alone on the 
flow and heat-transfer characteristics except 
those on the meanfand Nu, provided that the 
effect of Pr on the mean characteristics is 
abbreviated. 

The formation and intensity of secondary flow 
is characteristic of each non-dimensional para- 
meter. Pr exercises substantially no effect, though 
the intensity of secondary flow tends to decrease 
very slightly. Ro creates a broad central core 
where a uniform and rather weak secondary 
current flows, but a considerably strong return- 
ing current arises in the immediate vicinity of 
the upper and lower walls. The effect of Gr, 
is somewhere between those of Ro and K,. The 
secondary flow is strong not only in the central 
region but also in the neighbourhood of the 
upper and lower walls. K, induces a strong 
current along the horizontal centerline, which. 
however, decreases rapidly toward the upper or 
lower wall. 

The friction factor f and the Nusselt number 
Nu are also affected characteristically by the 
parameters. Pr has no substantial effect on 5 
white Ntr is considerably increased, when a 
strong secondary current is present beforehand. 
On the contrary, Ro causes a great increase in5 
but Nu is much less enhanced. The increase in 
them due to Gr, is gradual. However, it has an 
advantageous characteristic that it makes more 
contribution to the enhancement of heat transfer 
than flow friction. K, also possesses the same 
advantage, and raises more rapidly both Sand 
NU. 

Since the tube wall exercises a resistant force 
against the secondary flow, its rise and intensity 
are largely dependent on the geometrical shape 
of tube cross section. It is apparant that the 
circular cross section has a less resistance 
against the current so that the secondary flow 
occurs more readily, and its effects onfand Nu 
appear at much smaller values for a circular tube. 
The threshhold values of the non-dimensional 
force parameters at which their effects begin to 
be pronounced are Ro x 2, Gr, NN 100 and 

KI x 100 for a circular tube, while they are 
Ro z 10, Gr, z lOCKI and K, x 100 for a 
square tube. The rate of increase infand Nu due 
to the force parameters is also higher for a circu- 
lar tube for the same reason. 
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CONVECTION THERMIQUE MIXTE NATURELLE ET FOR&E POUR UN FLUIDE DANS 
UN TUBE COURBE EN ROTATION 

R&rmu&On itudie la convection thermique mixte naturelle et for&e pour un fluide dans un tube courbe 
et a section circulaire en rotation avec ies conditions d’un ecoulement compi~tement ttabii et de flux 
thermique parietaf constant par unite de longueur de tube. Les caracttristiques du transfert thermique et 
du frottement parietai sont determinCes par cinq parametres sans dimension: le rapport des rayons B, 
le nombre de Prandtl PJ,. un paramttre R, qui represente l’cffet des forces de Coriolis, le nombre de Grashof 
Gr, et le nombre de Dean K,. Les equations sont resolues par la methode des diff&rences Iinies et les 
r&sultats du calcul sont prttsentbs pour les prolils de vitesse longitudinale, les lignes de courant et les 
isothermes, les Nu et f locaux et moyens. Les effets de B sont minimes. Pr nh pas d’effet sensible surf 
mais accroit notablement Nu quand un fort courant secondaire est present. L’accroissement des trois 
derniers parametres relatifs a l’induction du courant secondaire intensifie a la fois f et N%u. Le taux 
d’accroissement defet Nu dii a ces paramttres est plus &eve pour un tube circulaire que pour un tube 
rectangulaire. Leurs effets commencement a ttre prononcb aux valeurs inferieures Ro N 2, Gr, = 100 

et K, N 100 tandis que pour un tube carri Ro 2 10, Gr, z loo0 et K, = 100. 

W~RME~BERGANG UND STRGMUNG IN EINEM ROTIERENDEN, GEKR~MMTEN 
KREISROHR BEI KOMBINIERTER FREIER UND ERZWUNGENER KONVEKTION 

Zusammenfassung-Die kombinierte freie und erzwungene konvektive Wlrmeiibertragung und die 
Stromungsausbildung in einem rotierenden Kreisrohr bei voll entwickelter Striimung mit der thermischen 
Randbedingung eines konstanten Warmestroms pro Langeneinheit des Rohres wurden untersucht. Die 
~~rme~bertragung und der Reibungseinfluss der Striimung wurden durch ftinfdimensionslose Parameter 
et-lasst, das sind das Radiusver~~ltuis B, die PrandtI-Zag Pr, der Parameter R,, der den Einfluss der 
Corioliskraft beriicksichtigt, die Grashof-Zahi Gr, und die Dean-Zahl X,. Die beschreibenden Gleichungen 
wurden mit einem endlichen Differenzenverfahren gel&t und die Ergebnissc der Berechnung sind ange- 
geben fur die Axial-Geschwindigkeit und die Temperaturstorung, die Stromlinien und die Isothermen, 
die lokalen f und Nu und die mittleren f und Nu. 

Der Einfluss von B ist minimal. Pr hat grundsltzlich keinen Einfluss aufS, aber zunehmendes Nu 
vergrassertf, wenn ein Sekundlr-Strom vorhanden ist. Die Zunahme in den letzten drei Parametern 
der sekun~r-induzierten Str~mungskr~fte vergrossert sowohl fals such Nu grundsltzlich. Die G&se 
der Zunahme in fund Nu, abhlngig von den Kraft-Parametern, ist fiir ein Kreisrohr hiiher als fur ein 
Rechteck-Rohr. lhr Eintluss beginnt merkhch bei kleineren Parametem ais Ro- 2, Gr, 1: 100 und 
K, z 100, wahrend diese Grenzen fur ein quadratisches Rohr bei Ro z IO, Gr, EZ 1000 und K, z IOOiiegen. 

TEH~OO~~EH I4 TE~EH~E IIPM ~OBMECTHO~ CB~~~O~HO~ M 
BbIHY~~~HHO~ HOH~E~~~~ BO BPA~A~~E~C~ ~CKP~B~EHHO~ 

TPYBE KPYI’JIOI’O CE=IEHMR 

AHHOTaqllJr-MCCneAyeTcR CJIOPKHbIti TeIIJIOO6MeH CBO6OAHOti II BbIHyX(AeHHOti KOHBeKlWefi 

M Te'IeHHe MMAKOCTM BO BpaUJaIO~eikH HCKplIBJIeHHOi KpyrJIOfi Tpy6e JJJIFI nOJIllOCTbM 

pa3RIITOrO TfSEHHR. TennoBoR nOTOK Ha enmruqy A~HH~I TpyBbz npeAnonaraeTcR LIOCTO- 

RHH~IM. OEIpefieJIeHht XapaKTepHCTMKM TetIJlOObMeHa II COIIpOTHBJSHHSl nOTOHy C IIOMOWblO 

~RTM 6e3pa3MepH~x napaMeT~o~:oTHo~eH~K paAMyCoB B, wC3Ia ~paH~T~K Pr, napaMeTpa 

Ro,npenc~asn~toryerosnarrnil~ K0p~1031~~0~0I~~nh1,~~~na~pacro~aGr~~stlcna~~~aK~. 

OCHOBHbIe ypaBHeHHK peILIeHbi MeTOAOM KOHeYHbIX pa3HOCTeft. n[peACTaBJIeHbI paCnpeRe- 

JleHHfl aKCMaJlbHOti CKOpOCTH 1cI 'CeMnepaTypU, JIllHUii TOKa K ln3OTepM JlOKaJlbHOFOfA NU, 

R CpeAHAX fti Nu. nOKa3aH0,YTO BJIllRHkIe B MllHUMaJIbHO.PrHe OHWbIBaeT CylIJeCTReHHOrO 

BJIMRHAFI Haf, HO 3HaYIlTeJIbHO yBeJlWIHBaeT Nu IlpH HaJlIIYRU CIiJlbHOl'O BTOpWtHOl'O TOKa. 

YBeJWieHHe IIOCJieAHAX TpeX RapaMeTpOB, OTBeTCTBeHHbIX 3a CHJIIJ, CrHAyIJHPylOWie 

BTOpWqHbIe TeYeHIIR, 3HaW¶TeZbHO yCHJlHBaeT fE3 NM. CKOpOCTb BO3paCTaH~Kf~ Nu A3-3a 

3TMX ~apaMeTpOB AJIFI Kpyr~O~ TQ,6bI 6O~b~e,~eM ~~~Tpy6np~MOyrO~bH~X.~XB~~~HKe 

HaYHHaeT CyfQeCTBeHHO CKa3blBaTbCR IIpH MX 3H&i9eHIIHX l'Opa3fiO MeHblIfEiX, ‘ieM 3H8WHJIR 

R oz2,Gr2 zlOOaET1=. 100, TOrAa KaK AJlR KBaApaTHbiX Tpy6 Roz 10,Grz X loo0 
II IT1 z loo. 


