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Abstract—A study is made of the combined free and forced convective heat transfer and fluid flowin a
rotating curved circular tube for the fully developed flow with the thermal boundary condition of constant
heat flux per unit length of tube. The heat-transfer and flow-friction characteristics are determined by the
five non-dimensional parameters, i.e. the radius ratio B, the Prandd number Pr, a parameter Ro which
represents the effects of Coriolis forces, the Grashof number Gr, and the Dean number K. The governing
equations are solved by finite difference method, and the results of computations are presented for the
axial velocity and temperature distributions, the streamlines and isothermals, the local fand Nu, and the
mean f and Nu. The effects of B is minor. Pr has substantially no effect on £, but increases Nu greatly
when a strong secondary current is present. The increase in the last three parameters of secondary-flow-
inducing forces enhance both f and Nu significantly. The rate of increase in f and Nu due to the force
parameters is higher for a circular tube than for rectangular tubes. Their effects commence to be pronounced
at smaller values of them which are Ro= 2, Gr, = 100 and K, ~ 100, while those for a square tube are
Ro = 10, Gr, = 1000 and K, = 100.

NOMENCLATURE P, modified pressure;
a, radius of circular tube; P, non-dimensional pressure =
b, radius of curvature; p/p(v/ay:
B, radius ratio = b/a; Pr, Prandtl number = v/o;
Cps specific heat at constant pressure; 4, heat flux;
C, source term; r,8,¢, toroidal coordinates;
C,, pressure gradient in ¢-direction; R, non-dimensional radial coordinate
Ca, temperature  gradient in - AR, A8, mesh sizes in R- and #-directions;
direction; Re, Reynolds number = 2aw,,/v;
D, E, F, dummy functions; Ro, non-dimensional parameter repre-
jA friction factor; sentingthemagnitudeoftheCoriolis
£ centrifugal acceleration = bQ?; force = a®Q/v;
Gr,, Grashof number = f.At,a>/v?; S, arc length of tube axis = by ;
h, heat-transfer coefficient ; t, temperature ;
k, thermal conductivity; At,, representative temperature =
K,, Dean number = 2aw, /(v,/B); PraCs;
MN, number of divisions in R- and 6- T, non-dimensional temperature =
directions; {tw — t)/AtL,;
Nu, Nausselt number = 2ah/k; u,v,w, velocity components in r-, 6- and
D, pressure; ¢@-directions ;
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non-dimensional velocity com-
ponents in R-, - and ¢-directions
= qu/v, av/v and w/w, ;

wi, representative velocity in ¢-direc-
tion = a*Ci/pu;

x',y,z, Cartesian coordinates;

A, thermal diffusivity ;

ay,4j,.. coefficients in finite difference equa-

G5, i,j, tion;

B, volume expansion coefficient ;

0, prescribed error for iterative pro-
cess;

g, ratio of mesh sizes = AR/AH;

{, vorticity ;

1, quantity in equation {47);

i, viscosity;

v, kinematic viscosity ;

o density ;

T, shearing stress;

¥, stream function;

w, relaxation parameter;

Q, angular velocity.

Subscripts

b, bulk mean;

iJj, space subscripts of grid point in R-
and O-directions;

L local;

m, mean;

s, stationary straight circular tube;

w, wall;
r- and ¢-components.

1. INTRODUCTION
IN RECENT years it has become increasingly
important to incorporate some cooling system
into the design of rotary machines such as gas
turbines, electric generators, motors, etc. An
improvement in the thermal efficiency of a gas
turbine can be effectively achieved by increasing
the gas temperature at the inlet of turbine.
However, the maximum temperature at which
the present day materials for rotor blades insure
the reliable operation of a gas turbine plant is
approximately 850°C so that, if the inlet gas
temperature exceeds this value, some cooling
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device is essential. Schmidt first proposed that
this problem could be solved by the use of blades
with holes drilled radially filled with some
cooling substance. It is expected that this givesan
extremely effective cooling, because the centri-
fugal acceleration can become of the order of
10*g. Many investigations of heat transfer
inside these thermosyphon holes have been
reported. These investigations were, however,
conducted under the Earth’s gravitational field,
which differs from the rotational field in the
presence of Coriolis forces which induce a
secondary flow in a plane perpendicular to the
main flow.

Further, the employment of some cooling
device for electric generators are also of great
importance to protect the insulating materials
surrounding conductors, which are usually
resistant against a high temperature up to
100-150°C for a reliable long-range operation.
As a coolant, air was first used. It was then
replaced by pressurized hydrogen which has a
larger thermal capacity. The cooling is effected
by pumping a coolant through hollow passages
located inside the conductors or through axially
located holes in the rotor drum. The hydrogen-
cooling method makes it possible to construct
a generator with the output of up to 250000 kW
compared with the maximum output of 60000
kW for an air-cooled generator. Recently it has
been attempted to employ water which is the
most efficient coolant. The water-cooled genera-
tors have been in practice constructed in the
Soviet Union, Switzerland, etc., and put into
operation, though there are some technical
difficulties encountered in sealing, strength,
balancing of rotor, and insulation. It is esti-
mated that this type of cooling method is
capable of the maximum output of 750000 kW.

As a rotating geometry many configurations
can be envisaged according to the shape and
location of cooled components, Le. (a) open
thermosyphon, (b) closed thermosyphon, (c)
straight tube rotating about a parallel axis, {d)
straight tube rotating about a perpendicular
axis, and (e) rotating curved tube. The first two,
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(a) and (b), are the configurations attempted to
be utilized for the cooling of gas turbine blades.
The first and the last three, (a), (c), and (d) and (e),
are the configurations encountered in cooling
rotor drums and conductors of electric generator.

A remarkable characteristic of the flow and
heat transfer in the rotational system of motion
is the presence of centrifugal and Coriolis forces
which induce a secondary flow in a plane perpen-
dicular to the direction of main flow, and the
flow and temperature fields are consequently
three-dimensional. The secondary flow also
arises, when a tube is curved, and enhances sig-
nificantly the pressure drops and heat-transfer
rates. In spite of the great practical importance
and academic interest, the flow and heat transfer
in rotating configurations are not yet sufficiently
investigated, and little information is available
for the design. Barua [1] has reported the
theoretical analysis of the fully developed flow
in a straight tube with circular cross section
rotating about a perpendicular axis [the con-
figuration (d)]. Morris [2] has presented the
result of theoretical analysis for the asymptotic
velocity and temperature distributions in the
configuration (c) solved by a series expansion in
terms of the rotational Rayleigh number.
Humphreys et al. [3] also investigated experi-
mentally the local and mean heat-transfer
characteristics for air flowing turbulently in the
entrance of a circular duct revolving about a
parallel axis. Mori and Nakayama [4] have
solved the same problem by Pohlhausen’s
method, and presented the pressure-drop and
heat-transfer characteristics, which hold for a
large angular velocity.

Compared with the problem in a rotating
system the study on the flow-friction and heat
transfer characteristics in curved stationary
tubes has been fully made in conjunction with the
application to heating and refrigerating plants.
It was first treated theoretically by Dean [5, 6],
who has solved the equations of flow by per-
turbation, and clarified that the flow field is
controlled by the Dean number alone. Adler [7]
made the extensive measurements of velocity
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distribution, and has found that the boundary-
layer approximation holds for large values of the
Dean number. He has also made a theoretical
analysis by Pohlhausen’s method, referring to
the results of his measurements. By the same
method Barua [8] has solved the flow field, and
later Mori and Nakayama [9, 10] have reported
the results of their theoretical analysis for both
laminar and turbulent flows which are valid
for large Dean numbers. The experimental
investigations were made for turbulent flow
and heat transfer by Ito [11], Seban and
McLaughlin [12], Rogers and Mayhew [13],
etc.

The investigation for the configuration (g)
has been attempted by Ludwieg [14]. He has
solved the boundary-layer equations by Pohl-
hausen’s method for large values of the Dean
number and rotational velocity for the fully
developed laminar flow in a square tube, and
obtained the friction factor which was verified
by his experiment.

The object of the present analysis is to investi-
gate theoretically the flow-friction and heat-
transfer characteristics in curved circular tube
rotating about the axis through the center of
curvature [configuration (e)]. The governing
equations are approximated by finite difference
schemesand solved by iterative method under the
conditions that the flow and temperature fields
are fully developed, and the wall heat flux is
uniform with peripherally uniform wall tem-
perature. The results of computations are
presented graphically for the temperature and
velocity distributions, the streamlines and iso-
thermals, and the local and mean Nusselt num-
bers and friction factors.

2. THEORETICAL ANALYSIS

Governing equations

The geometrical configuration of the physical
model for a rotating curved circular tube and its
coordinate system are given in Fig. 1. The sense
of the angular velocity vector is such that the
direction of the axial velocity coincides with
that of the rotational velocity. The cross section
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of the tube is perpendicular to the tube axis
0. For the convenience of the theoretical
analysis the toroidal coordinate system (r, 6, ¢)
is employed, and the governing equations are
described in terms of this coordinate system
instead of the Cartesian coordinate system (x’,
¥, z'). The velocity components in the r-, 8- and
¢-directions are denoted by u,v and w res-
pectively. The parts of the tube wall are termed
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we are concerned with so that the elimination
of gravitational force term apparently causes
no significant errors. The detailed derivation of
the governing equations which describe the
aforementioned physical model is given in [15].
They are, however, too complicated to solve
so that some additional assumptions will be
made to simplify them. First, we consider a
special case that the radius of curvature b is

L Axis of rotation

5
| l/ 4
_/_Ans of tube i B

o z'
Cc =4 -
i
Inner wall Horizontal l—Vertical Quter woll
centerline centerline

8 Lower wall
-~ b *

F1G. 1. Toroidal coordinate system.

the inner, outer, upper and lower walls for
the convenience of explanations of computa-
tional results. The horizontal and vertical center
lines, along which the axial velocity and tem-
perature distributions will be presented in a
graphical form, are also indicated in the figure.
The flow is assumed to be laminar and, with
the exception of density, the physical properties
are taken to be constant. The axial velocity is so
low that there is no energy dissipation due to
friction, and no heat source is present within the
cooling fluid. The gravitational force is neglected
compared with the centrifugal force due to rota-
tion. The rotational acceleration is usually of the
order of 103-10*g for the rotary machines which

much larger than the radius of tube a, ie.
B > 1. This is justified by the fact that B is
approximately 50 at the actual situations of
application. Further, the mean friction factors
f and Nusselt numbers Nu for both the exact
equations and the simplified equations with
B > 1 were computed and compared in [15] in
the case of a square tube, varying B from 5 to 500
which covers the range of practical interest. The
result shows that there is substantially no dif-
ference between the two solutions in the vicinity
of B = 50, and at B = 5 the simplified solutions
for f and Nu are respectively 6 and 2 per cent
lower than the exact solutions, while at B = 500
they are 3 and 2 per cent higher. Consequently,
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it can be anticipated that this simplification does
not cause intolerable errors. With this assump-
tion the term‘r cos 6 is to be ignored compared
with b. Further, all the terms which have b in
their denominator are negligible in comparison
with those which have r in their denominator or
those of derivatives with respect to r. However,
the centrifugal force term w?/b should be
retained, since the axial velocity w is much
larger than the velocity components of secondary
flow u, v.

Next, we deal with the hydrodynamically and
thermally fully developed flow regime, where
the axial pressure and temperature gradients
become constant, ie. Jdp/0s= — C, and
0t/ds = C,. Further, the velocity and tempera-
ture distributions maintain a similar form in the
axial direction and become independent of the
coordinate .

Before we introduce the simplified equations,
we modify the centrifugal force terms. The
density varies with temperature according to the
relation

p=0put pwﬁ(tw - t) R pw + pﬂ(tw - t)’ (1)

since p,, & p. In general the volume expansion
coefficient § is a function of temperature, and
the temperature dependence of 8 is not neces-
sarily negligible for water. However, it was found
in [15] that the differences of f and Nu between
the cases of variable and constant f were
approximately 06 and 2 per cent respectively.
This discrepancy is tolerable for the industrial
applications so that f is taken to be constant in
the present analysis. Therefore, the rotational
centrifugal force per unit volume is rewritten
in the form, noting that the acceleration of
centrifugal force is f, = bQ? and using equation

(1),
pb2 x p.f. + p LBt — 1). @)

In addition we introduce the modified pressure
p’ such that

P =p— pufrcosé. (3)
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The second term on the right-hand side of
equation (3) is a centrifugal force acting in the
x-direction and balanced with the pressure
gradient so that it makes no contribution to the
motion of fluid in tube. With these assumptions,
we obtain the following simplified equations

o(ru) ov

o T )
%4_ 6“ U_Z BW_Z
“or T Urae %%

—2QcosOw — f.fcosO(t, — 1)

10p' 0 [0v v Ou
=‘;5’”@<5+; ;%) ®

o v uw . w?
u— + v— + — +sinf—
or rod r b

+ 2Qsin 6w + f,fsin 6(t,, — )
10p 0fdv v u
‘_;rae”E(Er"L?_%)’ ©)

ow ow .
uas + v% + 2Qu cos  — vsin 6)

1 Pw  low  &Pw
=EC‘+V<W+767+W>’ ™
ot ot

u5+v;3—é+czw
ot 1ot 8%
=“(ﬁ+?5+}‘2ﬁ>’ ®)

which are subject to the boundary conditions

Uu=v=w=0, t =t,atwall 9)

In order to non-dimensionalize the governing
equations thus obtained, we introduce the
following non-dimensional variables

au v w
= — V= -, =—
v v wy
’
p L, —t

.
R=- (10
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Further, we attempt to alter the non-dimen-
sional equations to facilitate the numerical
computation. The equation of continuity is
identically satisfied by the stream function ¢

oy oy

U= R3O V= — R (11)
We introduce the vorticity of secondary flow {
ov vV U
¢ = R + R~ Ro0 (12)

Substitution of equations (11) into (12) yields
the equation of stream function

= - (13)

The equation of vorticity is derived by eliminat-
ing the irrelevant pressure terms from the two
equations of momentum in the R- and 6-direc-
tions, and is given by

o¢ 1574

U + Vﬁé—é

2
Vi = oR

ow
1K? oW ——— W )
+ 3 1<cos WR60+S16 +

w
(/B)RoK (cosG 0 + s1n0 )
orT aT
+ Gr, (cosoﬁ+ sin 06R> (14)

The equations of axial momentum and energy
are to be rewritten in the form

ow ow 4Ro
2 -
VW=U%r *Vrae * (UBIK,
x (Ucos — Vsin0) — 1, (15)
oT _ aT\ (JBK:
2 il el
V*T = Pr <U6R+VR69) 5 W. (16)

Equations (11) and (13)-(16) are the final system
of equations to be solved, and are subject to the
boundary conditions

oy

U=V=y=op=W=T=0atR=1 (17
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Since it is readily found that U, W and Tare
symmetric, and V, ¥ and { are anti-symmetric
with respect to the horizontal centerline, the
boundary conditions are altered to

U=V = .p_%=w T=0

at R=1for0 <8< n, (18)
oU oW T
0=~ "V=i=0

at 6=02nfor0<R<1, (19)

and it suffices to consider the upper half of the
cross section alone owing to symmetry.

Finite difference representation

All the governing equations are to be ex-
pressed in the following general form, using a
dummy function F which represents either one of
the dependent variables

oF OF
2 — =
V*F + D6R+E60 +C=0. (20)
D and E are either — U, — V/R or — PrU,

— PrV/R respectively, and C is a source term.
The radial coordinate is divided into M seg-
ments with the step size VR = 1/M, while the
angular coordinate is divided into N segments
with the step size A@ = n/N. An arbitrary grid
point in the domain is denoted by (i, j), and the
derivatives in equation (20) are approximated
by appropriate finite difference schemes. To the
non-linear inertia terms we apply the modified
one-sided difference scheme utilized by Spald-
ing et al. [16] in order to assure stability, i.e.

( 6F> ~ D+ |Di,j|
JR/;.; 2AR it
D, D, —|D,
—_ lAI,{j L — y12A1|2 ']|F,-_1‘j+O(AR),
(21)
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6F> E+IEl
30 i 206 T

E, E;

NEulp, BBy oan @

The Laplacian operator is replaced by the
central difference scheme
F,.,;—2F ;+ F,_

2 ~ _it1,j i,j i—1,j
i Fivi,j—Fiy;
+Fi,j+1 =2F, ;+F; ;,
A02
Approximating the differential equation (20)
by the finite difference schemes (21)-(23) and
solving for F; , we get

+

+0(AR%, A0%).  (23)

1, ],
Fijmay jFivyjtoyjFioy jtos;;Fijqg
+og i Fijoy +as,;C 24)

where

al ij= 1+AR/2R +(D1 1+ |Dl jl) }/ i, jo

{1- 8RR~ 0.~ DD R,

eAR
a3,| i= 2/R2 +(El ]+ |El )l) }/Ri,jv (25)

eAR
|E11|) }/Ri,j’

&2.i,j

X4,i,5= {EZ/Riz

asyi,j = ARZ/R s
with - R, ;=2(1+&*/R})+(|D, ;| + |E, ]9)AR
and ¢ = AR/AG. The coefficients D, ; E; ; and

the source term C; ; take on specific forms for
each dependent variable, but their presentation
is abbreviated. Equations (11) are approximated
by

~l//i,j+1 l//l] 1- 2

Uiy ™ = papr o + A8, (26)
~ l/’i+1,j—‘/’i—1,j 2

Vijm — ==+ AR (2)
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The boundary conditions (18) and (19) become
in the finite difference form

UM+1,j = VM+1,j = '/’M+2,j - '/’M,j

= WM+1,j= TM+1,j=0’ (28)

29)
Ui.N+2 - Ui,N = VV:',N+2 - VVi,N =
’I;,N+2 - ’I;,N = Vi,N+1 = l/"i,zv+1
= Ci,N+l =0, (30)

where the values at grid points outside the
domain are eliminated by the use of equation
(24) applied to a corresponding boundary point.

The wall vorticity is computed from the
stream function by the Dorfman-Romanenko’s
approximation [17]. Applying the equation of
stream function (13) to the wall i = M + 1, and
considering the boundary conditions (18), we
obtain the vorticity at wall

()
OR?/M+1,

The stream function at i = M is developed into
the Taylor series about the pointi = M + 1 as

(1)

CM+1,j =

o 44
UM, X Uns1,j — (aR)M+1,j AR
N (ﬂ) AR? <§3_‘/’) AR?
OR? m+1,; 2! oR3 m+1,j 3!
+ O(AR%). (32)

SinceYppy 1, j = (OY/0R)p+ 1, j = 0,equation(32)
becomes, using equation (31)

M~ 3 M+ T ¢ WM+1.;’

+ O(AR%). (33)

Differentiation of equation (13) with respect to
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Ryyields the following relationati = M + 1

5 (... 458
JR M+1,j— oR? M+1,j oR? M+1,j

63
T (W>M+l,j+ CM+1,j-

The derivative on the left-hand side of equation
(34) is replaced by the forward difference. Then
solving equation (34) for the third derivative of
stream function at i = M + 1, and substituting
it into equation (32), we finally obtain the wall
vorticity

(34)

N 3

£M+1,j~ - AR2(1 +AR/2)
1

" 21 + ARP2) S

The above vorticity was not used explicitly in
the iterative process to remove a cause of
instability. It was omitted by the use of equation
(24) for the vorticity at wall, and was computed
from equation (35), after solutions have con-
verged.

The governing equations have a singular point
at the center R = 0 so that the finite difference

lZ’M,j

+ O(AR?). (35)

equation (24) ceases to apply there. Since the "

stream function and vorticity are independent of
0, the boundary conditions (19) for them holds
identically at the center, ic.

‘/’1.;‘=C1,;=0- (36)

The rest of the dependent variables are deter-
mined by extrapolation. The parabolic extra-
polation formula from the values at the
neighbouring three successive points gives

Fij=3F;;=3F; ;+ F,; (37

The iterative procedure was employed to
obtain the solutions for equation (24). To in-
crease the convergence rate the overrelaxation
method was used, and the relaxation parameter
was evaluated from o =2[1 + /(1 — nl/n
with 5 = {cos n/M + cos z/N)/2. To the itera-
tion of vorticity, however, the underrelaxation
method was applied so that the fluctuation of
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vorticity during the iteration is small enough for
instability not to emerge. The iterative computa-
tion was terminated, when the relative error of
solutions became less than some preassigned
small quantity . It was found from the pre-
liminary computations that M = N =24
secured a sufficient accuracy correct up to three
significant figures with 6 = 0-001 for relatively
small values of the non-dimensional parameters.
However, for Pr > 1'3, Ro > 30, Gr, > 3000
and K; > 300, M =N =36 was used with
0 = 0001 to obtain convergent solutions with
sufficient accuracy. The underrelaxation para-
meter was varied from 015 to 05 according to
the magnitude of the non-dimensional para-
meters.

Evaluation of f and Nu
The mean friction factor f is defined by

ds , ,
—dp =15 3PWn (38)
which is solved for f as
8 8
I=mkw, "R,
or
f.Re 1
f..Re  8W, (40)

The mean Nusselt number is obtained from
the heat balance equation. The increase of fluid
enthalpy per the tube length ds is equal to the
heat supplied from wall of length ds by con-
vection so that

pc,Cy dsna*w,, = 2rnadsh(t, —t,). (41)

The mean Nusselt number is defined as Nu
2ah/k, which is rewritten in the form, using
equation (41) after some rearrangements

_(/BK, Nu 11 (/BK,

Nu = 3T, ’OrNus % T,

The wall shearing stress acting in the axial
direction is

ow
(Tr,q;)r:a = Hu (b;_)=a

(42)

(43)
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Non-dimensionalizing the shearing stress by the
dynamic pressure 4pw?, and dividing it by
f,. Re = 64, we have

(), -.. Re 1 (@w)
f..Re  16W, \8R /p.,. 44)

The first derivative is represented by the four-
point approximation

(&%),
0R Ju-

b 11WM*’1,;+ }’SWM,)~9WM“I,3+ 2WM—2,j
6AR

+ O(AR?). 45)

Noting Wy, ; = 0, substitution of equation
(45) into (44) yields

(fdea-Re _ 1
f..Re ~ 96W,

8Wy; — Wy, +2Wy
AR

X

(46)

The r-component of local heat flux at wall
directed toward the inside of tube is given by

g

ot
{Q)r=a = k(é;),;a = kl(tw - tb}' (4?)

The local Nusselt number is defined as Ny, =
2ah/k. Dividing Ny, by Nu, = 48/11 and apply-
ing the four-point approximation to the deriva-
tive of temperature, we obtain with T, , ; =0

Ny it
Nu, 48T,
18Ty — 9731+ 2Th2;
x AR

8)

3. RESULTS AND DISCUSSION
A great difference between a circular tube and
rectangular tubes for which the results of
computations are presented in [15] is seen in
the formation of secondary flow. The secondary
flow occurs in the plane perpendicular to the
tube axis so that the shape of tube cross section
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is a determining factor of its rise. It also affects
the pattern and intensity of secondary current.
Since the circular cross section has geometrically
aless resistanceagainst thecurrent, thesecondary
flow occurs more readily, and its effects on the
friction factor and the Nusselt number appear at
much smaller values of the non-dimensional
parameters. There is also no corner effect which
produces stagnant regions at coraners of cross
section, and reduces greatly the flow friction and
heat transfer.

There are five non-dimensional parameters, B,
Pr,Ro, Gr, and K,, and computations are
required for an extremely large number of cases
to grasp the entire characieristics. Considering
the economy, therefore, computations were
made such that the standard values of the para-
meters, B = 50, Pr = 07,Ro = 1, Gr, = 10and
K, = 10 were chosen, and, to see the effects of
one parameter, the rest of the parameters were
fixed at the standard values. Since the effects of
B was found to be minor from the computations
for rectangular tubes in [15], it was fixed at 50.
Further, the additional standard values, B = 50,
Ro = 10, Gr, = 10and K, = 100 were selected
to see the effects of Pr more clearly. The results
of computations are presented for the axial
velocity and temperature distributions, the
streamlines and isothermals, the local friction
factors and Nusselt numbers, and the mean
friction factors and Nusselt numbers. However,
it is lengthy to describe the effects of all the
parameters on the flow and heat-transfer charac-
teristics so that the descriptions here will be
constricted to the effects of Roalone except those
on the mean friction factors and Nusselt num-
bers, provided that the effect of Pr on the mean
characteristics is eliminated. The complete pre-
sentation of the results is made in [15].

Figures 2 and 3 show the effects of Ro on the
axial velocity and temperature distributions.
The solid, dotted and one-dotted lines represent
the curves for Re = 1, 10 and 70 respectively.
The Coriolis forces have the components in the
plane of secondary flow and in the ¢-direction,
The resultant force of the former components,
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F1G. 2. Variation of axial velocity distribution with Re
(B =50, Pr =07, Gr, = 10, K, = 10).

which is proportional to the axial velocity w,
is directed outward from the axis of rotation, and
inducesthesecondary flow. Thelatter component
is proportional to the velocity of the secondary
flow, and deccelerates the main flow in the
central region so that the axial velocity distri-
bution is flattened with the increase in Ro. In
the vicinity of the upper wall, however, the fluid
is accelerated by this component because the
direction of secondary current is reversed. In

consequence the Coriolis force together with
the inertia force causes the increase in the axial
velocity there as shown in the right figure for the
velocity distribution along the vertical center-
line. The velocity distributions are almost
symmetricabout the center owing to the property
of the Coriolis forces which tend to restore the
flowsystemtoanequilibriumstate. The variation
of temperature distribution is less marked. It is
duetothefact that therelatively strongsecondary
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F1G. 3. Variation of wemperature distribution with Ro
(B =350 Pr=070Gr, =10, K; = 10).
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current is constrained to the close vicinity of the
upper and lower walls, and it is weak in the
broad central core. The heat convected by the
secondary current is so small in the central
region that the heat is supplied by conduction
which results in temperature gradient rather than
flattening. The conducted heat is carried away
by the main flow by convection. Since the con-
vected heat is axisymmetric owing to the
symmetry of the axial velocity, the temperature
distributions are also symmetric about the
center.

The streamlines and isothermals were ob-
tained by interpolation from the stream function
and temperature distributions respectively. Since
they are symmetric about the horizontal center-
line, the former are plotted in the upper half
plane and the latter in the lower half plane. The
three streamlines are drawn such that they pass
either one of the points R ~ 0'1, 02 and 0-33 at
0 = 90°, and a value of stream function for each
streamline is specified so as to be able to assess
the flow rate and intensity of secondary flow.
The four isothermals are illustrated for 7T,
= 03. 07,10 and 1'5 so that the density of iso-
thermals indicates the steepness of temperature
gradient. The axis of rotation is located on the
left-hand side of the tube cross section so that
the circular secondary current flows counter-
clockwise in the upper half plane.

Figures 4 and 5 show the streamlines and
isothermals for the standard values (Ro = 1)
and Ro = 70 respectively. For Ro = 1 the effect
of the Coriolis forces is negligibly small. The
secondary flow must be governed mainly by the
buoyancy and centrifugal forces,and accordingly
the pattern of streamlines are somewhat shifted
toward theupper wall. For Ro = 70anessentially
different flow field is formed. The flow is uniform
over a broad central region which occupies
approximately a half of cross sectional area.
However, the current velocity is extremely low
as seen from the values of stream function. This
is attributable to the restoring property of the
Coriolis forces which push back the main flow
and flatten the axial velocity distribution. The
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FIG. 4. Streamlines and isothermals for standard values of
parameters
(B=50,Pr =07 Ro=1,Gr, =10, K, =10).

returning secondary current is forced to flow
through a narrow passage in the close vicinity
of the upper wall owing to the broadening of the
central core. The streamlines are dense there, but
there is not a great increase in velocity because
the secondary flow itself is not very strong. The
isothermals tend to be displaced at first. The
temperature gradient is, therefore, steep at the
outer wall, and is gradual at the inner wall.

90°

FIG. 5. Streamlines and isothermals for Ro = 70
(B=50,Pr =07,Gr, =10,K, = 0).
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Further increase of Ro results in the symmetric
pattern of isothermals about the vertical center
line. The temperature gradient at the lower wall
increases somewhat because of the relatively
strong secondary current there.

The results of the local friction factors and
Nusselt numbers are plotted against the angle 6.
They are presented in reference to those for a
stationary straight circular tube to see their
relative increase and variation. In order to
observe the effect of a non-dimensional para-
meter, the local friction factors and Nusselt
pumbers are computed for its three values with
the rest of the parameters fixed at the standard
values, and are represented by the solid, dotted
and one-dotted lines respectivelyintheincreasing
order of magnitude of the parameter.

Figure 6 show the local friction factors and
Nusselt numbers when Ro is varied. Ro has a
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F16, 6. Variaton of local friction factor and Nusseli number
with Ro
(B =50, Pr =07 Gr. =10, K, == 10).
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peculiar effect which is typical of the Coriolis
forces. The Coriolis force in the axial direction
opposes the main flow, and flattens the axial
velocity distribution. Thelarger theaxial velocity,
the larger the opposing force so that the central
core with uniform secondary flow and constant
axial velocity is formed, and, moreover, the
flow field becomes symmetric about the vertical
centerline. Consequently the distribution of the
local friction factor is also symmetric about
# = 90°. Since the Coriolis force acting on the
returning secondary current in the vicinity of the
upper wall causes the axial velocity and accord-
ingly its gradient to increase. It results in the
increase of friction factor at # = 90°, and an
appreciable increase is seen for Ro= 70. The
effect on the Nusselt number is on the other
hand less pronounced, though the variation of the
Nusselt number with 6 is similar to that of the
friction factor. The maximum value is only 1'5
for Ro = 70, while that of the friction factor is as
jarge as almost 30.

The mean friction, factors f and Nusselt
numbers Nu are plotted on semi-log scale against
the non-dimensional parameters in the form of
theratio to those for a stationary straight circular
tube f; and Nu,. f;. Re and Nu, are known to be
64 and 48/11 respectively for the fully developed
laminar flow with constant wall heat flux. The
non-dimensional parameters are varied as Ro
= 1-100, Gr, = 100~10000 and K, = 10-1000,
while Bis fixed at 50 because its effects are minor.

Figure7 is the mean friction factor and Nusselt
number against Ro, which are represented by
the solid and dotted lines respectively. As it has
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FiG. 7. Mean friction factor and Nusselt pumber vs. Ro
(B = 50, Pr = 07, Gr, = 10, K, = 10).
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been pointed out before, the geometrical resis-
tance against the secondary current is smaller
for circular cross section. Consequently the
effect of Ro becomes evident at a smaller value
Ro=x 2 than for rectangular cross section
Ro =~ 10. Moreover, the rate of increase is much
larger. In the case of f, f. Re/(f, . Re) has almost
the same value at Ro = 10 for both cases, but at
Ro = 100 it is 1'5 for rectangular cross section,
while it reaches as high as 2'15 for circular cross
section. The increase in f is more pronounced,
because the Coriolis force acts as a resistant
force against the main flow, and ftends to asymp-
totically increase in proportion to Ro*. The heat
transfer is less enhanced by the Coriolis forces,
and its asymptotic behaviour is such that Nu
is proportional toRd'/!? as in the case of rec-
tangular cross section.

20 T 1T T T 7

FI1G. 8. Mean friction factor and Nusselt number vs. Gr,
(B =50,Pr =07 Ro=1,K,; =10).

Figure 8 shows the plot of the mean friction
factor and Nusselt number against Gr,. The
effect of secondary flow due to Gr, commences
to become significant at Gr, ~ 100 compared
with Gr, ~ 1000 for rectangular cross section.
On the contrary to Ro the increase rate of Nu
due to Gr, is higher than that of f; and Nu/Nu,
exceeds f. Re/(f; . Re) at Gr, ~ 1000. For large
Gr,,fand Nu are proportional to Gr}/® and Gr}/”
respectively. These results agree exactly with
those of Mori and Makayama [8] for a circular
tube rotating about a parallel axis.

Figure 9 shows the mean friction factor and
Nusselt number against K;. The effect of K,
appears at K; = 100, which is the same value
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F1G. 9. Mean friction factor and Nusselt number vs. K,

(B =50, Pr =07, Ro=1, Gr, = 10).
as for rectangular cross section. However, the
increase rate of f and Nu is larger for circular
cross section. The centrifugal force furthers
heat transfer more than flow resistance as the
buoyancy force does. Nu increases at the same
rate as f up to about K, = 100, and more
rapidly thereafter. The extrapolated behaviour
is such that f and Nu vary proportionally to
K}’® and K}’* respectively. For a stationary
curved circular tube, however, both of them
increase at the rate of K1/%,

4. CONCLUSIONS

The problem treated in the present theoretical
analysis is the flow and heat transfer in a curved
circular tube rotating about the axis through
the center of curvature. The flow-friction and
heat-transfer characteristics are determined by
the five non-dimensional parameters, the radius
ratio B, the Prandtl number Pr, the parameter
Ro, which represents the effects of the Coriolis
forces, the Grashof number Gr, and the Dean
number K. The governing equations are solved
by finite difference method by the use of iterative
procedure, and the results of computations are
presented graphically for the axial velocity and
temperature distributions, the streamlines and
isothermals, the local friction factors and Nusselt
numbers and the mean friction factors and
Nusselt numbers. The evaluation of the above
flow and heat-transfer characteristics is made,
varying one of the non-dimensional parameters
with the rest of the parameters fixed at the
standard values which are B = 50, Pr = 07,
Ro =1, Gr, = 10 and K, = 10. B is, however,
fixed at 50, since its effects on the flow and heat-
transfer characteristics are minor. Due to the
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excessive length, the presentation and discussion
are confined to the effects of Ro alone on the
flow and heat-transfer characteristics except
those on the mean f and Nu, provided that the
effect of Pr on the mean characteristics is
abbreviated.

The formation and intensity of secondary flow
is characteristic of each non-dimensional para-
meter. Prexercises substantially no effect, though
the intensity of secondary flow tends to decrease
very slightly. Ro creates a broad central core
where a uniform and rather weak secondary
current flows, but a considerably strong return-
ing current arises in the immediate vicinity of
the upper and lower walls. The effect of Gr,
is somewhere between those of Ro and K. The
secondary flow is strong not only in the central
region but also in the neighbourhood of the
upper and lower walls. K, induces a strong
current along the horizontal centerline, which.
however, decreases rapidly toward the upper or
lower wall.

The friction factor f and the Nusselt number
Nu are also affected characteristically by the
parameters. Pr has no substantial effect on f
while Nu is considerably increased, when a
strong secondary current is present beforehand.
On the contrary, Ro causes a great increase in f,
but Nu is much less enhanced. The increase in
them due to Gr, is gradual. However, it has an
advantageous characteristic that it makes more
contribution to the enhancement of heat transfer
than flow friction. K, also possesses the same
advantage, and raises more rapidly both f and
Nu.

Since the tube wall exercises a resistant force
against the secondary flow, its rise and intensity
are largely dependent on the geometrical shape
of tube cross section. It is apparant that the
circular cross section has a less resistance
against the current so that the secondary flow
occurs more readily, and its effects on fand Nu
appear at much smaller values for a circular tube.
The threshhold values of the non-dimensional
force parameters at which their effects begin to
be pronouticed are Ro =2, Gr, = 100 and

H. MIYAZAKI]

K; ~ 100 for a circular tube, while they are
Ro =~ 10, Gr, ~ 1000 and K, ~ 100 for a
square tube. The rate of increase in fand Nu due
to the force parameters is also higher for a circu-
lar tube for the same reason.

ACKNOWLEDGEMENT
The author wishes to thank the University of Minnesota
Computer Center for the grant extended to him of compu-
tation time on the CDC 6600 Computer,

REFERENCES

1. S. N. Barua, Secondary flow in a rotating straight pipe,
Proc. R. Soc. 227A, 133 (1954),

2. W.D. Mornis, Laminar convection in a heated vertical
tube rotating about a parallel axis, J. Fluid Mech. 21,
453 (1965).

3. 1. F. HuMpHreys, W. D. Morrss and H. Barrow,
Convection heat transfer in the entry region of a tube
which revolves about an axis parallel to itself, Jns. J.
Heat Mass Transfer 10, 333 (1967).

4. Y. Morl and W. NakayaMA, Forced convective heat
transfer in a straight pipe rotating about a parallel axis
{Ist report, laminar region), Int. J. Heat Mass Transfer
16, 1179 (1967

3. W. R. Dean, Note on the motion of fluid in a curved
pipe, Phil. Mag. 4 (20}, 208 (1927).

6. W. R. Dean, The stream line motion of fluid in a curved
pipe. Phil. May. 5 (30), 673 (1928).

7. M. ApLer, Stromung in gekriimrhten Rohren, Z.
Angew. Math. Mech. 14, 257 (1934),

8. S. N. Barau, On secondary flow in stationary curved
tubes, Q. J. Mech. Appl. Math. 16, 61 (1963).

9. Y. Mortand W. Nakavama, Study on forced convective
heat transfer in curved pipes { Istreport, laminar region),
Int. J. Heat Mass Transfer 8, 67 (1965).

10. Y. Morrand W. NAKAYAMaA, Study on forced convective
heat transfer in curved pipes (2nd report, turbulent
region), Int. J. Heat Mass Transfer 10, 37 (1967).

i1. H. I10, Friction factors for turbulent flow in curved
pipes, J. Basic Engng 81D, 123 (1959).

12. R. A. Seran and E. F. McLavugaLmn, Heat transfer in
tibe coils with laminar and turbulent flow, Int. J.
Heat Mass Transfer 6, 387 (1963).

13. G.C.F. Rogers and Y. R. MAYHEW, Heat transfer and
pressure loss in helically coiled tubes with turbulent
flow, Int. J. Heat Mass Transfer 7, 1207 (1964).

14. H. Lupwigg, Die ausgebildete Kanalstromung in einem
rotierenden System, fng.-Arehiv 19, 77 (1959).

15. H. Mivazaxi, Combined free and forced convective
heat transfer and fluid flow in rotating curved tubes,
MS Thesis, University of Minnesota (1970).

16. D. B. SPALDING, A. K. RUNCHAL and M. WOLFSHTEIN,
Solutions of the equations for the transport of vorticity,
heat and mass for two-dimensional flows with and
without recirculation, Imperial College, Mech. Eng.
Depart., SF/TN/2(1967).

17. L. A. Dorsman and U. B. ROMANENKO, Flow of viscous
fluid in ¢cylindrical vessel with rotating cover (in Russian),
AH CCCP, Mech. Fluid Gas (5), 63 (1966).



HEAT TRANSFER AND FLUID FLOW IN TUBES

CONVECTION THERMIQUE MIXTE NATURELLE ET FORCEE POUR UN FLUIDE DANS
UN TUBE COURBE EN ROTATION

Résumé—On étudie la convection thermique mixte naturelle et forcée pour un fluide dans un tube courbe
et & section circulaire en rotation avec les conditions d’un écoulement complétement établi et de flux
thermique pariétal constant par unité de longueur de tube. Les caractéristiques du transfert thermique et
du frottement pariétal sont déterminées par cing paramétres sans dimension: le rapport des rayons B,
le nombre de Prandtl Pr. un paramétre R, qui représente 1'effet des forces de Coriolis, le nombre de Grashof
Gr, et le nombre de Dean K ,. Les équations sont résolues par la méthode des différences finies et les
résultats du calcul sont présentés pour les profils de vitesse longitudinale, les lignes de courant et les
isothermes, les Nu et f locaux et moyens. Les effets de B sont minimes. Pr n’a pas d’effet sensible sur f
mais accroit notablement Nu quand un fort courant secondaire est présent. L'accroissement des trois
derniers paramétres relatifs & Pinduction du courant secondaire intensifie & la fois f et Nu. Le taux
d’accroissement de f et Nu dii & ces paramétres est plus élevé pour un tube circulaire que pour un tube
rectangulaire. Leurs effets commencement a étre prononcés aux valeurs inférieures Ro ~ 2, Gr, ~ 100
et K, ~ 100 tandis que pour un tube carré Ro x 10, Gr, ~ 1000 et K, = 100.

WARMEUBERGANG UND STROMUNG IN EINEM ROTIERENDEN, GEKRUMMTEN
KREISROHR BEI KOMBINIERTER FREIER UND ERZWUNGENER KONVEKTION

Zusammenfassung —Die kombinierte freie und erzwungene konvektive Wirmeiibertragung und die
Strémungsausbildung in einem rotierenden Kreisrohr bei voll entwickelter Strémung mit der thermischen
Randbedingung eines konstanten Wirmestroms pro Lingeneinheit des Rohres wurden untersucht. Die
Wirmeiibertragung und der Reibungseinfluss der Stromung wurden durch fiinf dimensionslose Parameter
erlasst, das sind das Radiusverhiltuis B, die Prandtl-Zahl Pr, der Parameter R, der den FEinfluss der
Corioliskraft beriicksichtigt, die Grashof-Zahl Gr, und die Dean-Zahl K ;. Die beschreibenden Gleichungen
wurden mit einem endlichen Differenzenverfahren geldst und die Ergebnisse der Berechnung sind ange-
geben fiir die Axial-Geschwindigkeit und die Temperaturstérung, die Stromlinien und die Isothermen,
die lokalen f und Nu und die mittleren fund Nu.

Der Finfluss von B ist minimal. Pr hat grundsatzlich keinen Einfluss auf £, aber zunehmendes Nu
vergrossert f, wenn ein Sekunddr-Strom vorhanden ist. Die Zunahme in den letzten drei Parametern
der sekundiir-induzierten Strémungskrifte vergrossert sowohl f als auch Nu grundsitziich. Die Grosse
der Zunahme in fund Nu, abhiingig von den Kraft-Parametern, ist fiir ein Kreisrohr héher als fiir ein
Rechteck-Rohr. Ihr Einfluss beginnt merklich bei kleineren Parametern als Ro= 2, Gr, ~ 100 und
K, ~ 100, wabrend diese Grenzen fiir ein quadratisches Rohr bei Ro = 10,Gr, ~ 1000 und K; ~ 100liegen.

TENJAOOBMEH U TEUEHHUE [1PH COBMECTHON CBOBOJJHON N
BBIHYEIEHHON KOHBEKIMY BO BPAHIAIOIIENCA UCKPUBJIEHHOR
TPYBE KPYIVIOTO CEYEHUA

AHHOTAUUA—VCCTENYETCA CIOMHBIA TENI000MeH CBOGOAHON M BHIHYHIEHHON HKOHBeKLMeh
U TeueHWE HUJKOCTH BO BPAIAIIEHCA MCKPUBJIEHHON Kpyriaol Tpy6e HJIA NOJHOCTHIO
passuToro Tevenud. TemIoBOM NOTOK HA eAMHMIY JJIUHE TPyOh NpEANOJaraercHd IOCTO-
sAuHeM. OnpefeeHbl XapaKTePHCTHKN Tenaoo0MeHa M COTPOTHBICHHA MOTOKY C NOMOIIBIO
naTH GespasMepHHIX APaMeTPOB: OTHOMEHuA pafguycor B, unmcna Ilpangras Pr, napamerpa
Ro, npeacTaBiAoUIero BINAHUA KOPHOAHNCOBOH cumsl, uuexa I'pacroda Grg u uncia Juna K.
OCHOBHBIE YPABHEHUA pelieHB MeTOROM KOHEUHHX pasHocTelt. IlpejcraBienun pacnpepe-
JeHHA AKCUAJBLHON CKOPOCTH W TEMHEPATYPH, JUHUH TOKA M M30TEPM JOKAJBHOTO f M Ni,
u cpegunx f 1 Nu. I[Tokasano, 4ro BausHNe B MUHMMAIBHO. Pr He OKA3HBaeT CYIMECTBEHHOT0
BIMAHNA HA f, HO 3HAYUTENBHO yBeauuuBaeT Ny IPU HAIMYMH CHIBHOTO BTOPUYHOrO TOKA,
VBesuueHne nocjaefHUX TPeX NAPAMETPOB, OTBETCTBEHHBIX 34 CHJH, WHAYIMpYIOHiue
BTOPHYHBIE TeUeHMA, 3HAYMTENbHO yeunusaeT f u Nu. Cropocts Bospactauusa f u Nu us-3a
3TUX MAPaMeTPOB ANA KPYFao#l TpyGul Gosbuie, YeM Jas TPy npaMoyronbHuX. Ux sausune
HAYMHAET CYIUECTBEHHO CHABWBATLCA NPH MX 3HAYEHHAX rOPA3sf0 MEHBUIUX, YeM BHAYEHHMHA
Ro ~ 2, Gr, ~ 100 u K, ~ 100, torna Kak misi kBappatuex Tpy6 Rox 10, Gre = 1000
u Ky ~ 100.
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